Übungsaufgaben 2 - Lösungen

- 1. Eine Ebene mit dem Normalenvektor $\vec{n} = \begin{pmatrix} 1 \\ 3 \\ -5 \end{pmatrix}$ geht durch den Punkt P(6 | 8 | 2)
 - a) Bestimme für E eine Ebenengleichung in Normalenform.

$$E: \begin{pmatrix} 1\\3\\-5 \end{pmatrix} \cdot \left[\vec{x} - \begin{pmatrix} 6\\8\\2 \end{pmatrix} \right] = 0$$

b) Bestimme für E eine Ebenengleichung in Koordinatenform.

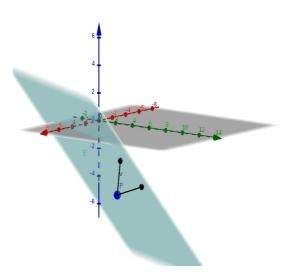
$$E: x_1 + 3x_2 - 5x_3 = 6 + 24 - 10 = 20$$

c) Liegen die Punkte A(8 | 9 | 3) und B(11 | 6 | 2) in der Ebene?

$$1.8+3.9-5.3=8+27-15=20 \Rightarrow A \in E$$

$$1.11+3.6-5.2=11+18-10=19\neq 20 \Rightarrow A \notin E$$

d) Gebe die Gleichung einer zu E echt parallelen Ebene an.

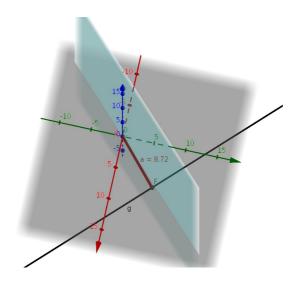

$$z.B.:F:x_1+3x_2-5x_3=15$$

e) Bestimme den Abstand des Punktes R(6 | 3 | -6) von dieser Ebene.

$$|\vec{n}| = \sqrt{1^2 + 3^2 + (-5)^2} = \sqrt{35}$$

$$d = \begin{vmatrix} \frac{1}{\sqrt{35}} \begin{pmatrix} 1\\3\\-5 \end{vmatrix} \cdot \begin{vmatrix} 6\\3\\-6 \end{vmatrix} - \begin{vmatrix} 6\\8\\2 \end{vmatrix} \end{vmatrix} = \begin{vmatrix} \frac{1}{\sqrt{35}} \begin{pmatrix} 1\\3\\-5 \end{vmatrix} \cdot \begin{pmatrix} 0\\-5\\-8 \end{vmatrix} = \frac{25}{\sqrt{35}} \approx 4,23$$

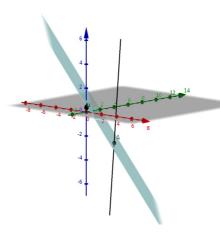
2. Wandle die Ebenengleichung $E: \vec{x} = \begin{pmatrix} 1 \\ 3 \\ -5 \end{pmatrix} + s \begin{pmatrix} 6 \\ 8 \\ 2 \end{pmatrix} + t \begin{pmatrix} 7 \\ 6 \\ 4 \end{pmatrix}$ in die Normalenform um.


3. Sei
$$g: \vec{x} = \begin{pmatrix} 9 \\ 3 \\ -2 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$
;

Berechne den Abstand des Ursprungs von der Geraden. Bestimme E senkrecht zu g durch O, dann den Schittpunkt D von Gerade und Ebene, dann den Abstand von D zu 0:

$$E: \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \begin{bmatrix} \vec{x} - \begin{pmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{bmatrix} = 0 \Rightarrow x_1 - x_2 = 0 \Rightarrow 9 + t - (3 - t) = 0 \Leftrightarrow 2t = -6 \Leftrightarrow t = -3$$

$$Durchstoßpunkt: \begin{pmatrix} 9 \\ 3 \\ -2 \end{pmatrix} - 3 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \\ -2 \end{pmatrix} \Rightarrow D(6;6;-2)$$


$$d = \overrightarrow{0D} = \sqrt{6^2 + 6^2 + (-2)^2} = \sqrt{76} \approx 8,72$$

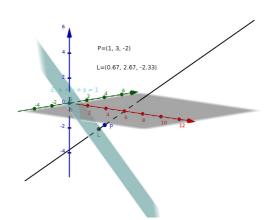
4. Sei
$$g: \vec{x} = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} + t \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}; E: x_1 + x_2 + x_3 = 1$$

a) Bestimme den Durchstoßpunkt der Gerade durch die Ebene. Einsetzen in Koordinatenform

$$1+t+3-t-2+t=1 \Leftrightarrow t=-1 \Leftrightarrow \vec{x} = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} - 1 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ -3 \end{pmatrix} \Rightarrow F(0;4;-3)$$

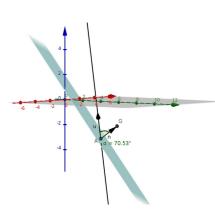
b) Fälle vom Stützpunkt der Geraden P(1|3|-2) das Lot auf die Ebene E. Ermittle die Lotgeradengleichung und den Lotfußpunkt.

Problemstellung: Fälle das Lot von einem Punkt auf eine Ebene.


Der Normalenvektor der Ebene wird Richtungsvektor der zu bestimmenden Lotgeraden, denn die Lotgerade verläuft senkrecht zur Ebene, also in Richtung von \vec{n} . Außerdem ist P Aufpunkt der Lotgeraden.

Anschließend erfolgt dann folgt die Schnittpunktbestimmung (durch Einsetzen von g in E).

$$g: \vec{x} = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}; \quad E: x_1 + x_2 + x_3 = 1 \Leftrightarrow 1 + t + 3 + t - 2 + t = 1 \Leftrightarrow 3t = -1 \Leftrightarrow t = -\frac{1}{3}$$


$$\begin{vmatrix} 2 \\ -1 \end{vmatrix}$$

$$\begin{pmatrix} 1\\3\\-2 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} \frac{2}{3}\\\frac{8}{3}\\\frac{-7}{3} \end{pmatrix} \Leftrightarrow F\left(\frac{2}{3},\frac{8}{3},\frac{-7}{3}\right)$$

c) Ermittle den Winkel zwischen dem Richtungsvektor der Geraden und dem Normalenvektor der Ebene.

$$\cos(\alpha) = \frac{\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}}{\left| \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right| \left| \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right|} = \frac{1}{\sqrt{3} \cdot \sqrt{3}} = \frac{1}{3} \Leftrightarrow \alpha = 70,53^{\circ}$$

- 5. Gegeben sind die Punkte A(1|-1|-7); B(17|-1|-5); C(-8|-2|5); D(1|7|7)
 - a) Bestimme den Flächeninhalt des Dreiecks ABC.
 - b) Berechne den Abstand des Punktes D von der Ebene durch die Punkte A,B und C.

Alle Lösungen sind ohne Gewähr!!!